

DARWIN Aerospace InfoStructure

David Korsmeyer, Ph.D.

Computational Sciences Division NASA Ames Research Center

HistoryFuture PlansWork in Progress

Motivation

Original Problem:

- Wind tunnel test engineers had to be on site to monitor test progress
- Results were on tape and in hardcopy binders
- Comparing data across instrumentation and across tests was difficult

Goal:

To provide a secure, timely, data management system that allows scientists/engineers to browse, query, analyze and compare aerospace data while at remote, distributed locations.

Customers

Aerospace CFD Data

- SHARP program
 - Solvers: GASP, UPS
- CGNS compatible codes

Adv Instrument Data

- Wind Tunnel Test Data
 - ARC: Unitary, NFAC, ArcJet,
 - LaRC
 - MSFC

- PSP, TSP, VMD, PIV, PMAT

- AeroSAPIENT
- Flight Simulation Data
- EOS Data

Wind Tunnel Test Data

Flight Test Data

EOS Data

Flight Simulation Data

Implementation

- Developments in first four years (1996 1999)
 - Cross-data comparisons
 - User management workspace and dataviews
 - "Live" data feed with self-updating displays
 - Collaboration tools (message board and file exchange)
 - Experimental and CFD data
 - Application-like user interface
- All developments were accomplished within the original architecture, i.e., Perl CGI scripts on server, Netscape browser on client.

Implementation

Secure web-based architecture running over a wide-area network.

■ History

- ☐ Future Plans
- ☐ Work in Progress

Implementation

Metadata Activity

- Meta-Database
 - Capture wider range of data types
 - Redesigned schema and integrated with DARWIN v2.5 (1999)
 - Manage large datasets
 - Operations database currently contains close to 40 million values of several thousand variables
 - Developing solutions for optimizing performance during access and input and modification
 - Coordinate with Peer distributed, remote databases and file-systems

Updated Requirements

- Distribution of server-side elements
 - Multiple data servers
 - Each wind tunnel requires its own data server
 - Multiple meta-databases
 - Installation at new sites (LaRC, MSFC) will require additional meta-databases
 - Multiple user databases
 - New sites want to manage their own user databases
 - Multiple web servers
 - Strategically placing DARWIN web servers will help minimize network latency issues

☐ History☐ Future Plans☐ Work in Progress

InfoStructure Architecture

Desired Grid-like Technologies

- Remote Access to Distributed files
 - GridFTP?
 - Using http and WebDAV, DFS
 - Read, not Copy
- Network
 - Automatic bandwidth allocation
 - Secure point to point connections, IsoWAN
- Authentication and Access Control
 - Akenti/LDAP
 - MDS

IsoWAN Services

IsoWAN Concept

High speed interconnected proxy Nodes supporting NASA-wide services

THE END

DARWIN – IsoWAN connectivity

DARWIN – Current connectivity

DARWIN – Proposed connectivity

